
ECS Advances
     

OPEN ACCESS

Python for Electrochemistry: A Free and All-In-One
Toolset
To cite this article: Weiran Zheng 2023 ECS Adv. 2 040502

 

View the article online for updates and enhancements.

You may also like
Deposition of VOX Films by Reactive
Sputtering and its Properties
Xiaoying Wei, Kailiang Zhang, Wang Fang
et al.

-

A new calibration method for charm jet
identification validated with proton-proton
collision events at s = 13 TeV
The CMS collaboration, Armen Tumasyan,
Wolfgang Adam et al.

-

Search for Multimessenger Sources of
Gravitational Waves and High-energy
Neutrinos with Advanced LIGO during Its
First Observing Run, ANTARES, and
IceCube
A. Albert, M. André, M. Anghinolfi et al.

-

This content was downloaded from IP address 116.6.38.30 on 06/03/2024 at 06:44

https://doi.org/10.1149/2754-2734/acff0b
/article/10.1149/1.3567627
/article/10.1149/1.3567627
/article/10.1149/1.3567627
/article/10.1149/1.3567627
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.1088/1748-0221/17/03/P03014
/article/10.3847/1538-4357/aaf21d
/article/10.3847/1538-4357/aaf21d
/article/10.3847/1538-4357/aaf21d
/article/10.3847/1538-4357/aaf21d
/article/10.3847/1538-4357/aaf21d
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsu71Zfg4zIS8ZZdTuIJWxqPxASrqNH0ZFUP32uq-cuwxH0uJk_UtFaA3OEH8dr2BWIidrvzHkzMTnUyGp2ODj-_1EXt5jsVq5AsSXf-CKZusoxfje6HKFm6T631wIgzuPZyMLiWwG-QRk5_wrE0wmfnRXb2KjRSQiLBnVV7TIfkDiIcvl6Dhi-3hOSxO5U86qfRVKdZKTWAHQN534xlvDcibXd6Vfy5WTlhYrcQq-T_kgX-FbYbHrDyOfKL6fTWuHGqv_GVfsH6rkDPmw5FGQMFDaq84ZwvyRPRqODMRaZ9IrLMeoiHnruRxIuKoaC9qqFnWAX1ZOTCp2hrYh7Eoaw&sig=Cg0ArKJSzGqx-vIQCGDs&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.el-cell.com/products/test-cells/electrochemical-dilatometer/ecd-4-nano/%3Fmtm_campaign%3Diop%2520pdf%2520advert%26mtm_kwd%3Decd-4-nano%26mtm_source%3Dpdf%26mtm_cid%3D2024


Python for Electrochemistry: A Free and All-In-One Toolset
Weiran Zhengz

Department of Chemistry, Guangdong Technion-Israel Institute of Technology, Shantou 515063, People’s Republic of China
Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel
Institute of Technology, Shantou 515063, People’s Republic of China
Technion-Israel Institute of Technology, Haifa 32000, Israel

Python, an open-source, interpreted programming language, has emerged as a transformative force within the scientific community,
captivating researchers with its rich ecosystem of packages and syntax that prioritizes readability and simplicity. In the rapidly
evolving field of electrochemistry, where the analysis of complex data sets, custom analysis routines, and theoretical simulations
are indispensable, Python’s capabilities have garnered significant attention. This review serves as a general introduction to the
utilization of Python in electrochemistry, focusing on beginners who are new to programming concepts.
© 2023 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/
2754-2734/acff0b]

Manuscript submitted September 2, 2023; revised manuscript received September 27, 2023. Published October 10, 2023.

Electrochemistry has gained significant momentum across var-
ious research sectors in recent years, from energy conversion and
storage to organic synthesis and environmental analysis. Driven by
advancements in experimental techniques and increasing parameters,
electrochemical experiments become more intricate, often requiring
combining multiple techniques (e.g., in situ experiments) while
producing increasingly large datasets. Electrochemists face the
challenge of deciphering complex electrochemical responses (e.g.,
current, potential, resistance, capacitance, etc.), understanding elec-
trode processes, and extracting crucial parameters that govern
electrochemical behaviors. To conduct such studies, one must
analyze multidimensional datasets, develop customized analysis
procedures, simulate and verify theoretical models, and synchronize
multiple instruments with potentiostats.

The need for standardized and robust data analysis tools and
methodologies has become paramount. In response to this growing
demand, advanced data analysis techniques, such as statistical
analysis, machine learning, and computational modeling, have
become indispensable.1–3 Learning and applying modern toolkits
that integrate these analytical approaches can arm electrochemists
with the ability to standardize data analysis, unravel the complexities
of electrochemical systems, facilitate groundbreaking discoveries,
and push the boundaries of electrochemical research.

Python, an open-source, general-purpose programming language,
is one of the best platforms for scientific computation due to its ease
of use, readability, and vast collection of scientific modules and
libraries.4 It was conceived in the late 1980s by Guido van Rossum
with the intention of creating a language that prioritized code
readability and expressiveness, enabling programmers to achieve
more with fewer lines of code compared to languages like C++ or
Java. Since its first release as Python 1.0 in 1994, Python has
evolved continuously, with the current version at the time of writing
being Python 3.11. Following its release and regular updates, Python
has been gaining popularity in the scientific and engineering
communities due to its advantages over traditional tools, primarily
commercial software (free vs paid; open-source vs close-source).
Moreover, its affordability and accessibility lead to widespread
adoption in university education across various disciplines, equip-
ping the younger chemists with basic programming skills.5,6 Yet,
despite its popularity and the vast and free availability of many
scripts/modules/packages contributed by electrochemical groups
worldwide, the power of Python as an all-in-one electrochemical
toolset for data analysis and problem-solving still needs to be
discovered by many researchers.

In this short review, we outline the general concepts and
workflow related to using Python as a toolset for electrochemical
research, from its advantages to the code structure and the electro-
chemical resources, aiming to provide an introduction to beginners
who are new to programming.

Why use Python for Electrochemical Analysis?

The most significant advantage of Python is code simplicity
and readability, meaning it can be accessed and understood by
researchers without a background in computer science. One can
embrace programming readily after training for a few hours, unlike
other languages like C++ or Java. Its syntax is designed to be
readable and straightforward, simplifying code development, com-
prehension, and maintenance. Python’s object-oriented nature allows
researchers to organize their codes around data and their interactions
while providing flexibility in variable typing. It supports multiple
programming paradigms, including functional, procedural, and
object-oriented styles. The ability to execute code line-by-line
facilitates efficient debugging and interactive data analysis.7

The second advantage of Python is its rich ecosystem and active
community. Apart from the essential functions, the extensive
standard library of Python further enriches its capabilities, offering
modules for file input/output (I/O), system calls, internet protocols,
and graphical user interfaces. Researchers can leverage Python’s
scientific libraries (i.e., Python packages), such as “NumPy” for
numerical operations, “SciPy” for scientific computing,
“Matplotlib” for plotting, and “Pandas” for data analysis, to tackle
the diverse computational tasks encountered in research. Moreover,
users can easily develop and share their scripts in the community to
provide more specific functionalities.

The advantages of Python extend beyond its accessibility and
library ecosystem. As an open-source language, Python is freely
available and continuously improved by a global community of
developers, making it more affordable, flexible, and up-to-date than
many commercial software packages.

The incorporation of Python programming into electrochemical
research yields a multitude of specific advantages. A prime benefit is
that researchers can augment their productivity by automating
monotonous tasks. For instance, Python can be used to script routine
procedures such as titration curve plotting or cyclic voltammetry
analysis, which would otherwise consume a significant amount of
time if done manually. Python’s ability to handle and process
voluminous datasets is another considerable benefit. With Python’s
powerful libraries like “NumPy” and “Pandas,” researchers can
analyze gigabytes of data from electrochemical impedance spectro-
scopy (EIS) or chronoamperometry experiments in a fraction of the
time it would take using less efficient methods. Furthermore, PythonzE-mail: weiran.zheng@gtiit.edu.cn

ECS Advances, 2023 2 040502

https://orcid.org/0000-0002-9915-6982
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1149/2754-2734/acff0b
https://doi.org/10.1149/2754-2734/acff0b
mailto:weiran.zheng@gtiit.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1149/2754-2734/acff0b&domain=pdf&date_stamp=2023-10-10


can perform intricate computations, such as modeling complex
electrochemical systems using libraries like “SciPy.” This liberates
researchers to spend more time on crucial tasks, like experimental
work and interpreting data for advancements in batteries, fuel cells,
and bioelectrochemistry. Additionally, Python encourages reprodu-
cibility in research. This is indispensable in the scientific commu-
nity, as it bolsters the credibility and verifiability of results. Other
scientists can employ the same Python scripts for data pre-proces-
sing, analysis, and visualization to replicate and verify results
effectively. For example, a Jupyter Notebook containing all the
Python code and graphical output from an experiment on lithium-ion
battery performance could be shared among researchers worldwide,
enabling them to reproduce the study and validate the findings.

To summarize, Python expands the horizons of electrochemical
research by empowering general researchers to develop customized
analysis routines tailored to their specific needs, surpassing the
limitations of commercial software. The language also enables the
simulation of theoretical models, providing insights that may not be
directly observable in experiments alone.

General Structure of a Python Script for Electrochemistry

First, one must have a Python coding environment to write and
run codes. Anaconda is one of the most popular platforms for
scientific coding that runs locally. A full tutorial on how to install
and configure Anaconda can be found on its website (https://www.
anaconda.com), which we will not repeat here. Often, a more user-
friendly front-end coding environment is installed based on
Anaconda. In my view, using the “JupyterLab” as the development
environment (i.e., coding environment) is strongly suggested to

ensure informative and sharable scripts with others because of its
notebook-like style. Another emerging choice is Colab (https://
colab.google) developed by Google, which provides a hosted service
that requires little to no effort in installing individual environments
and packages, making it easier to collaborate and share codes. After
configuring the environment, one can start with the coding (i.e.,
Python scripts). A Python script for electrochemical analysis
typically follows a structured approach divided into several essential
parts, as shown in Fig. 1 with example codes.

Call basic modules and packages.—The script begins by
importing basic Python modules and packages that are often
dependencies of other packages. They are often hosted on GitHub
together with detailed instructions and examples. These often include
“NumPy” for numerical operations, “Pandas” for data handling, and
“Matplotlib” for plotting. For example, you might see code like
“import numpy as np” or “import pandas as pd” at the start of the
script. These modules and packages provide the fundamental tools for
data manipulation, mathematical operations, and plotting. Some of the
most important ones are listed as basic dependencies in Fig. 2.

Call electrochemical modules and packages.—The script im-
ports specific electrochemistry-focused packages. These could
include modules like “pints” for time-series analysis, “impedance”
for EIS analysis, “electrochem” for cyclic voltammetry (CV) data
visualization, and “lmfit” for curve fitting. For example, “from
impedance.models.circuits import Randles” would allow access to
the Randles circuit model. These specialized packages offer more
nuanced tools tailored to electrochemical research needs.

Figure 1. Workflow and corresponding code example of Python programming for electrochemical applications. The package “impedance.py” is an example in
the data analysis.

ECS Advances, 2023 2 040502

https://www.anaconda.com
https://www.anaconda.com
https://colab.google
https://colab.google


Figure 2. Selected Python modules, packages, and scripts for electrochemical applications. EC: electrochemistry.

ECS Advances, 2023 2 040502



Data import and sorting.—Following the setup, the script moves
to data import and sorting. Typically, this involves using “Pandas”
or “NumPy” functions to load data from files, often CSV or Excel,
into Python’s data structures (like DataFrames or arrays). The data is
then sorted or cleaned as necessary. For example, one might remove
outliers, normalize current with electrochemical surface area
(ECSA), or sort it based on specific criteria (e.g., current range,
potential range). This part of the script sets up the data for
subsequent analysis.

Data analysis.—The core of the Python script lies in the data
analysis section. This section uses the previously imported modules
to process the sorted data, applying statistical methods, fitting
curves, generating models, or whatever else is needed for the
specific analysis. For instance, you might use “lmfit” to fit an
experimental current-voltage curve to a theoretical model or “ixdat”
to correlate electrochemical data with mass spectroscopy data for
in situ analysis.

Data output and visualization.—The final part of the script
focuses on output and visualization. Here, the processed data is
visualized using plotting libraries like “Matplotlib” or “Seaborn,”
and the plots are customized to be clear and informative. Also, the
processed data and analysis results are often written back to files for
future reference using “Pandas” or “NumPy” functions.

Overall, a Python script for electrochemical data analysis
provides a comprehensive approach to handling, processing, and
visualizing data. Each part is crucial and contributes to the overall
analysis, making Python a powerful tool for electrochemical
research.

Python Modules/Packages for Electrochemistry

In Python programming, modules are used to manage and reuse
certain codes effectively. These modules come in the form of Python
scripts that have a.py extension and contain functions, classes, and
variables that can be called upon when needed. The Python language
comes equipped with popular core modules such as os, re, and sys.
Additionally, developers have the ability to create their own modules
or use third-party modules available on the Python Package Index
(PyPI) (https://pypi.org) through a package manager like pip. By
using modules, developers can avoid rewriting common code and
promote code reuse. Importing modules also helps to prevent
naming conflicts and keeps the project organized. For larger sets
of modules, developers can pack them together as a package (or
library), which is simply a collection of modules organized within a
directory.

Regarding modules and packages for electrochemistry, they can
be classified into two main categories. First, there are the basic
dependencies which are crucial for supporting basic functionalities
and other modules/packages. Then there are the specific electro-
chemical tools that provide more specialized functions. To help
clarify these categories, Fig. 2 lists some popular modules and
packages, along with their relationships and general functions. All
modules and packages can be found via PyPI with detailed
instructions and examples. Users are strongly advised to read these
documents for a comprehensive understanding. These modules and
packages, developed by various electrochemical groups, provide
essential tools for hardware control, data analysis and visualization,
modeling and simulation, and other applications in daily research.
Herein, only a brief glance is provided for general awareness.

Hardware control and automatization.—A few examples in-
clude the “hardpotato” package (Python API to control program-
mable potentiostats, Fig. 3A)8 and the “LABS” package (Laboratory
Automation and Batch Scheduling).9 The former is developed to
standardize commands across different potentiostat models, enabling
automated experiments on any instrument, from data acquisition to
analysis and simulation. The latter is used for integrating multiple

lab devices and enabling users to orchestrate automated electro-
chemical synthesis with the ability of parameter input and system
monitoring.

Data analysis and visualization.—Analyzing and plotting data
are the major topics for Python, and most packages are developed to
suit specific analytical methodologies. A few general current-voltage
data handling packages are the “ecdh”10 (for direct and simple
handling of electrochemical data, from sorting to visualization), the
“fuelcell”11,12 (for streamlining electrochemical data analysis), and
the “electrochem”13 (for reading raw electrochemical data and
generating plots and tables for battery researchers) packages. The
packages for analyzing EIS data contribute a significant number to
the PyPI and a few handy ones include the “PyEIS,”14 “PyEIA,”15

“impedance.py,”16,17 “DearEIS,”18 “pyimpspec,”19 “pymultipleis,”20

and so on, sharing similar basic functions (e.g., fitting and simula-
tion) with different focuses on functionalities (e.g., distribution of
relaxation times (DRT) analysis). A special package worth note-
taking is “ixdat” devoted to in situ experimental data analysis
(Fig. 3B).21 Developed as a collaboration project by the interfacial
electrochemistry group at Imperial College London, the package
enables convenient correlation between results from operando/in situ
analysis. So far, it supports the combination of electrochemistry,
mass spectroscopy, and spectroelectrochemistry data, with X-ray
diffraction and X-ray photoelectron spectroscopy in the development
stage.

Electrochemical modeling and simulation.—Modeling and
simulation play a vital role in understanding and predicting complex
electrochemical phenomena, aiding in the design and optimization of
electrochemical systems. It represents another significant application
of Python in the realm of electrochemistry research. With the help of
specific packages, researchers can create sophisticated models and
run simulations to understand and predict electrochemical systems’
behavior.22 Two notable examples of such packages are “opem”
(open-source proton exchange membrane (PEM) fuel cell simulation
tool)23,24 and “MPET” (multi-physics electrochemical tool,
Fig. 3C).25,26 “opem” is designed for the modeling and simulation
of PEM fuel cells, offering a comprehensive set of functions and
modules to simulate various aspects, including performance ana-
lysis, polarization curve fitting, and system optimization. It incorpo-
rates advanced mathematical models considering mass transport,
electrochemical reactions, and heat transfer. “MPET” package
focuses on multi-physics modeling and simulation of electroche-
mical systems, providing a framework for coupling and simulating
different physical phenomena, such as electrochemical reactions,
heat transfer, fluid flow, and species transport in batteries, fuel cells,
and electrolyzers. With MPET, researchers can investigate the
performance, durability, and optimization of various electrochemical
devices, facilitating advancements in energy storage and conversion
technologies. Notably, the same group recently released Hybrid-
MPET for hybrid electrodes.27

Other useful packages include “pyMECSim” (a Python cyclic
voltammetry simulation software for advanced analysis of electro-
chemical kinetics, e.g., kinetic zone diagram and Langmuir
isotherm),28 “Supycap” (an analysis tool for supercapacitors),29

“MetalWalls” (a molecular dynamics software dedicated to electro-
chemical system simulation),30,31 “RedoxPySolid” (a simulation
tool for statistical model of heterogeneous electrochemistry,
Fig. 3D),32,33 “pybamm” (Python battery mathematical modeling
tool),34,35 “liionpack” (a battery pack modeling tool based on
pybamm),36,37 and many more. These packages empower researchers
to simulate and analyze complex electrochemical processes, facil-
itating the understanding of fundamental mechanisms and aiding in
the design and optimization of electrochemical devices. As Python
continues to evolve, it is expected that more specialized packages
will emerge, further expanding the capabilities of electrochemical
modeling and simulation and driving advancements in the field of
electrochemistry.

ECS Advances, 2023 2 040502

https://pypi.org


User-Shared Python Scripts and Applications

Many functions are not necessarily published as modules or
packages in the PyPI by the authors but as user-generated scripts (or

notebooks if “JupyterLab” is used) and Python applications. These
scripts and applications, normally publicly shared as supporting
information of papers or as GitHub/GitLab repositories, can be

Figure 3. Published examples of selected
packages demonstrating their functions in elec-
trochemistry research. (A) “hardpotato”
package for unified control of commercial
potentiostats; Reproduced with permission
from Ref. 8 Copyright 2022, the authors. (B)
“ixdat” package for correlation between mass
spectroscopic data and electrochemical signal;
Reproduced with permission from Ref. 45
Copyright 2021, Elsevier Ltd. (C) “MPET”
package for modeling and verification of ki-
netic aspects of porous electrodes within a
battery system. Reproduced with permission
from Ref. 25 Copyright 2017, the authors. (D)
“RedoxPySolid” package for data analysis and
modeling from variable-frequency square wave
voltammetry; Reproduced with permission
from Ref. 33 Copyright 2021, American
Chemical Society.

ECS Advances, 2023 2 040502



reused by other researchers to reproduce the literature results and
analyze their own data with ease. Beginners can import and pre-
process raw electrochemical data, apply filters or corrections, and
generate visual representations such as cyclic voltammograms,
impedance spectra, Tafel plots, etc.

A few notable scripts are mentioned here. Wang et al. provided a
collection of electrochemistry simulation scripts with a graphical
user interface (GUI) to visualize the dynamic behaviors on the
electrode through simulations of related equations, including elec-
trical double layer (EDL) capacity, electrochemical polarization,
potential step, current step, pulse voltammetry, cyclic voltammetry,
and electrochemical impedance.38 Thomas Roy et al. developed a
software called EchemFEM to provide finite element solvers to
simulate electrochemical transport, such as diffusion, advection, and
migration.39,40 The Monash electrochemical group released
BIOMEC (Bayesian inference and optimization for the Monash
electrochemical simulator) for calculating parameters using mathe-
matical optimization and Bayesian inference.41,42 The pyDRTtools
developed by Francesco Ciucci et al. offers an intuitive Python
application to run DRT analysis from EIS data.43,44

Overall, these scripts and applications, similar to modules and
packages, provide more flexibility in implementing preferred data
analysis algorithms and customizing visualizations to highlight
specific features or trends of electrochemical data.

Challenges and Future Perspectives

Using Python for electrochemical research offers numerous
benefits, such as its extensive scientific modules and packages,
versatility, and ease of use. However, there are certain challenges.
The most significant is the steep learning curve for beginners in
Python programming, requiring time and effort to gain proficiency in
the language and its relevant libraries (some of them are not well
documented). Moreover, often for the same applications, especially
for electrochemical simulations and modeling, one may find multiple
modules and packages doing a similar job, even producing con-
flicting results. It requires a more careful examination of the codes
and variables to ensure that the functionalities suit the right purpose.

Despite the challenges, Python’s increasing popularity as a
scientific programming language is driving the development of
specialized tools and packages for electrochemistry. With the field’s
progress, we can anticipate more user-friendly and standardized
packages tailored to researchers’ specific needs. Moreover, Python’s
open-source nature fosters collaboration and knowledge sharing
among researchers, allowing them to collectively develop and
enhance electrochemical analysis tools. Another future perspective
lies in integrating Python with emerging technologies such as machine
learning and artificial intelligence. The compatibility of Python with
popular machine learning libraries, including Scikit-learn and
TensorFlow, offers new possibilities for data-driven approaches in
electrochemical research. By leveraging machine learning algorithms,
patterns can be extracted, properties can be predicted, and experi-
mental designs can be optimized, leading to accelerated discoveries
and advancements in electrochemical systems.

Overall, Python stands as a powerful tool in the realm of
electrochemical research, empowering researchers to advance their
studies through its simplicity, flexibility, and wide-ranging capabil-
ities. Whether researchers seek to understand the kinetic aspects of
electrochemical reactions, or batch process a large dataset and
visualization, Python offers a wealth of resources to enhance
research capabilities and drive scientific progress. By embracing
Python, the field of electrochemistry can unlock its true potential in
unraveling complex phenomena and addressing critical challenges.

Acknowledgments

Weiran Zheng is grateful for the support of the Guangdong Basic
and Applied Basic Research Foundation (Grant Number:
2023A1515012277) and the Guangdong Technion-Israel Institute
of Technology (Grant Number: ST2200002).

ORCID

Weiran Zheng https://orcid.org/0000-0002-9915-6982

References

1. A. M. Bond, J. Zhang, L. Gundry, and G. F. Kennedy, Curr. Opin. Electrochem.,
34, 101009 (2022).

2. H. Chen, E. Kätelhön, and R. G. Compton, Curr. Opin. Electrochem., 38, 101214
(2023).

3. J. M. Diaz-Cruz, N. Serrano, C. Perez-Rafols, C. Arino, and M. Esteban, J. Solid
State Electrochem., 24, 2653 (2020).

4. J. Sundnes, Introduction to Scientific Programming with Python (Springer, Berlin)
(2020).

5. K. A. Tanemura, D. Sierra-Costa, and K. M. Merz Jr., Python for Chemists
(American Chemical Society, Washington) (2022).

6. A. R. McDonald and J. A. Nash, Teaching Programming across the Chemistry
Curriculum (American Chemical Society, Washington) (2021).

7. C. J. Weiss, J. Chem. Educ., 94, 592 (2017).
8. O. Rodriguez, M. A. Pence, and J. Rodriguez-Lopez, Anal. Chem., 95, 4840 (2023).
9. M. M. Hielscher, M. Dorr, J. Schneider, and S. R. Waldvogel, Chem. Asian J., 18,

e202300380 (2023).
10. A. M. Raniseth and M. RødneElectroChemical Data Handler., (https://github.com/

amundmr/ecdh) (2023).
11. S. Garg, A. Smith, and A. LimayeFuelcell: Data processing for fuel cell and

electrolyzer experiments., (https://github.com/samaygarg/fuelcell) (2021).
12. S. Garg, J. Fornaciari, A. Weber, and N. Danilovic, J. Open Source Softw., 6, 2940

(2021).
13. Vincent WuArbin Electrochemical Tools., (https://github.com/vince-wu/electro-

chem) (2020).
14. K. KnudsenPyEIS: A, Python-based Electrochemical Impedance Spectroscopy

simulator and analyzer, (https://github.com/kbknudsen/PyEIS) (2019).
15. J. L. Vishart, J. Castillo-Leon, and W. E. Svendsen, SoftwareX, 15, 100720 (2021).
16. M. Murbach, B. Gerwe, N. Dawson-Elli, and T. L.-k., J. Open Source Softw., 5,

2349 (2020).
17. M. Murbach, B. Gerwe, N. Dawson-Elli, and T. L.-k.impedance.py: A Python

package for working with electrochemical impedance data, (https://github.com/
ECSHackWeek/impedance.py) (2023).

18. V. YrjänäDearEIS: A GUI program for analyzing, simulating, and visualizing
impedance spectra., (https://github.com/vyrjana/DearEIS) (2023).

19. V. Yrjänäpyimpspec: A package for parsing, validating, analyzing, and simulating
impedance spectra., (https://github.com/vyrjana/pyimpspec) (2023).

20. R. Chukwupymultipleis: A library for fitting a sequence of electrochemical
impedance spectra., (https://github.com/richinex/pymultipleis) (2023).

21. S. B. Scottixdat: The In-situ Experimental Data Tool., (https://github.com/ixdat/
ixdat) (2023).

22. E. L. Molel and T. F. Fuller, J. Electrochem. Soc. (2023).
23. S. Haghighi, K. Askari, S. Hamidi, and M. Mahdi, “Rahimi.” J. Open Source

Softw., 3, 676 (2018).
24. S. HaghighiOPEM, (Open Source PEM Fuel Cell Simulation Tool). (https://github.

com/ecsim/opem) (2021).
25. R. B. Smith and M. Z. Bazant, J. Electrochem. Soc., 164, E3291 (2017).
26. D. CogswellMPET – Multiphase Porous Electrode Theory., (https://github.com/

TRI-AMDD/mpet) (2023).
27. Q. Liang and M. Z. Bazant, J. Electrochem. Soc., 170, 093510 (2023).
28. K. VaddipyMECSim: A Python wrapper for MECSim., (https://github.com/

kiranvad/pyMECSim) (2021).
29. Y. ChenSupycap: Analysis tool for the CC and CV experiment of supercapacitors,

(https://github.com/AdaYuanChen/Supycap) (2021).
30. A. Marin-Laflèche et al., J. Open Source Softw., 5, 2373 (2020).
31. M. SalanneMetalWalls, (MW). (https://gitlab.com/ampere2/metalwalls) (2021).
32. A. MarianovRedoxPySolid: Statistical model of heterogeneous electrochemistry,

(https://github.com/Aleksei-Marianov/RedoxPySolid) (2022).
33. A. N. Marianov, A. S. Kochubei, T. Roman, O. J. Conquest, C. Stampfl, and

Y. Jiang, Anal. Chem., 93, 10175 (2021).
34. V. Sulzer, F. B. Planella, P. Agarwal, S. Chopra, and A. KhetarpalPyBaMM,

(Python Battery Mathematical Modelling). (https://github.com/pybamm-team/
PyBaMM) (2023).

35. V. Sulzer, S. G. Marquis, R. Timms, M. Robinson, and S. J. Chapman, J. Open Res.
Softw., 9, 14 (2021).

36. T. Tranter et al., J. Open Source Softw., 7, 4051 (2022).
37. T. Tranter et al., (2023), liionpack: A battery pack simulation tool that uses the

PyBaMM framework. (https://github.com/pybamm-team/liionpack).
38. X. Wang and Z. Wang, J. Chem. Educ., 99, 752 (2021).
39. T. Roy, V. Ehlinger, and N. GovindarajanFinite Element Method for Electrochemical

Transport, (EchemFEM). (https://github.com/LLNL/echemfem) (2023).
40. T. Roy, J. Andrej, and V. A. Beck, J. Comput. Phys., 475, 111859 (2023).
41. L. Gundry, G. Kennedy, J. Keith, M. Robinson, D. Gavaghan, A. M. Bond, and

J. Zhang, ChemElectroChem, 8, 2238 (2021).
42. L. GundryBayesian Inference and Optimisation for the Monash Electrochemical

Simulator., (https://github.com/lukegun/BIOMEC) (2023).
43. B. Py, A. Maradesa, and F. Ciucci, Electrochim. Acta, 439, 141688 (2023).
44. F. CiuccipyDRTtools: An intuitive python GUI to compute the DRT., (https://

github.com/ciuccislab/pyDRTtools) (2023).
45. S. B. Scott, J. Kibsgaard, P. C. K. Vesborg, and I. Chorkendorff, Electrochim. Acta,

374, 137842 (2021).

ECS Advances, 2023 2 040502

https://orcid.org/0000-0002-9915-6982
https://doi.org/10.1016/j.coelec.2022.101009
https://doi.org/10.1016/j.coelec.2023.101214
https://doi.org/10.1007/s10008-020-04733-9
https://doi.org/10.1007/s10008-020-04733-9
https://doi.org/10.1007/978-3-030-50356-7
https://doi.org/10.1021/acsinfocus.7e5030
https://doi.org/10.1021/bk-2021-1387
https://doi.org/10.1021/bk-2021-1387
https://doi.org/10.1021/acs.jchemed.7b00078
https://github.com/amundmr/ecdh
https://github.com/amundmr/ecdh
https://github.com/samaygarg/fuelcell
https://doi.org/10.21105/joss.02940
https://github.com/vince-wu/electrochem
https://github.com/vince-wu/electrochem
https://github.com/kbknudsen/PyEIS
https://doi.org/10.1016/j.softx.2021.100720
https://doi.org/10.21105/joss.02349
https://github.com/ECSHackWeek/impedance.py
https://github.com/ECSHackWeek/impedance.py
https://github.com/vyrjana/DearEIS
https://github.com/vyrjana/pyimpspec
https://github.com/richinex/pymultipleis
https://github.com/ixdat/ixdat
https://github.com/ixdat/ixdat
https://doi.org/10.1149/1945-7111/acfcdb
https://doi.org/10.21105/joss.00676
https://doi.org/10.21105/joss.00676
Open Source PEM Fuel Cell Simulation Tool). (https://github.com/ecsim/opem
Open Source PEM Fuel Cell Simulation Tool). (https://github.com/ecsim/opem
https://doi.org/10.1149/2.0171711jes
https://github.com/TRI-AMDD/mpet
https://github.com/TRI-AMDD/mpet
https://doi.org/10.1149/1945-7111/acf47f
https://github.com/kiranvad/pyMECSim
https://github.com/kiranvad/pyMECSim
https://github.com/AdaYuanChen/Supycap
https://doi.org/10.21105/joss.02373
https://gitlab.com/ampere2/metalwalls
https://github.com/Aleksei-Marianov/RedoxPySolid
https://doi.org/10.1021/acs.analchem.1c01286
https://github.com/pybamm-team/PyBaMM
https://github.com/pybamm-team/PyBaMM
https://doi.org/10.5334/jors.309
https://doi.org/10.5334/jors.309
https://doi.org/10.21105/joss.04051
https://github.com/pybamm-team/liionpack
https://doi.org/10.1021/acs.jchemed.1c00944
https://github.com/LLNL/echemfem
https://doi.org/10.1016/j.jcp.2022.111859
https://doi.org/10.1002/celc.202100391
https://github.com/lukegun/BIOMEC
https://doi.org/10.1016/j.electacta.2022.141688
https://github.com/ciuccislab/pyDRTtools
https://github.com/ciuccislab/pyDRTtools
https://doi.org/10.1016/j.electacta.2021.137842



